
VT-Ceiling Systems

Test report: Impact sound reduction

PPRN

akustikprodukter

Report 18-718-R1 2019-05-09 5 pages, 2 appendices

Akustikverkstan AB, Kinnegatan 23, 531 33 Lidköping, tel: +46 510 - 911 44

pontus.thorsson@akustikverkstan.se Direct: +46 706 – 59 37 99

IMPACT SOUND IMPROVEMENT FOR VIBRATEC CEILING SYSTEMS VT-SFC AND VT-CBC

ABSTRACT

The impact sound level and the impact sound improvement have been measured in a laboratory for two different suspended ceiling systems; VT-SFC and VT-CBC from Vibratec Akustikprodukter AB. Both ceiling systems have been mounted below a reference heavyweight floor made of 160 mm concrete. Both systems were mounted with 250 mm suspension and 95 mm mineral wool, and with 2, 3 and 4 layers of normal gypsum boards (12.5 mm thickness) respectively.

All measurements have been performed according to SS-EN ISO 10140-3:2010 and evaluated according to SS-EN ISO 717-2:2013. Single number values for all measurements can be found in the table below.

Test sample	$L_{n,w}$ (dB)	$C_{\rm I,50-2500}$	$\Delta L_{\rm w}$ (dB)	$C_{\mathrm{I},\Delta}$
1. Vibratec VT-SFC, 250 mm suspension with 95 mm mineral wool, 2 layers of 12.5 mm normal gypsum board	53	-6	25	-7
2. Vibratec VT-SFC, 250 mm suspension with 95 mm mineral wool, 3 layers of 12.5 mm normal gypsum board	51	-6	28	-7
3. Vibratec VT-SFC, 250 mm suspension with 95 mm mineral wool, 4 layers of 12.5 mm normal gypsum board	49	-7	30	-7
 Vibratec VT-CBC-RF50, 250 mm suspension with 95 mm mineral wool, 2 layers of 12.5 mm normal gypsum board 	46	2	32	-15
5. Vibratec VT-CBC-RF50, 250 mm suspension with 95 mm mineral wool, 3 layers of 12.5 mm normal gypsum board	45	0	34	-14
6. Vibratec VT-CBC-RF50, 250 mm suspension with 95 mm mineral wool, 4 layers of 12.5 mm normal gypsum board	43	0	35	-13

1. CLIENT

Vibratec Akustikprodukter AB, Fagernäsvägen 1, 760 17 Blidö, Sweden Contact: Svante Hägerstrand, 0176 – 20 78 84, svante.hagerstrand@vibratec.se

2. ASSIGNMENT

To measure the impact sound level and the impact sound improvement of two suspended ceiling systems sold by Vibratec. The measurements shall be made according to SS-EN ISO 10140-3:2010 and evaluated according to SS-EN ISO 717-2:2013.

3. TEST SAMPLES

The constructions of the test samples are described in Table 1. The test samples were mounted below Akustikverkstan's 160 mm heavyweight reference concrete floor. The whole surface was covered, and elastic strips were mounted between test sample and surrounding laboratory structure.

Figure 1: The VT-SFC system contains only primary profiles. Tested with 25 mm elastic pads. In the tests the hangers were mounted with c/c 900 mm and the profiles were mounted with c/c 450 mm.

Figure 2: The VT-CBC system contains both primary and a secondary profiles. Tested with 50 mm elastic pads. In the tests the hangers were mounted with c/c 600 mm, the primary profiles were mounted with c/c 750 mm, and the secondary profiles were mounted with c/c 400 mm.

Sample	Sample description
1	VT-SFC with 2 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads
2	VT-SFC with 3 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads
3	VT-SFC with 4 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads
4	VT-CBC-RF50 with 2 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspension with 95 mm mineral wool. 50 mm elastic pads
5	VT-CBC-RF50 with 3 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspension with 95 mm mineral wool. 50 mm elastic pads
6	VT-CBC-RF50 with 4 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspension with 95 mm mineral wool. 50 mm elastic pads

 Table 1: Description of test samples. P describes the c/c distance between primary profiles, S the c/c distance between hangers.

 between secondary profiles, and G the c/c distance between hangers.

4. MEASUREMENT PROCEDURE

The impact sound level measurements were performed according to SS-EN ISO10140-3:2010 with the tapping machine in 5 positions on the concrete floor. The microphone was placed on a rotating boom and the measurement period was 60 seconds, which corresponds to two full revolutions of the rotating boom. The reverberation time in the receiving room were measured using the rotating boom, 16 measurements in total. The measurements were then evaluated according to SS-EN ISO 717-2:2013.

The measurements were performed by Carl Nyqvist in Akustikverkstan's laboratory in Skultorp, Sweden, 2019-01-30 and 2019-02-11.

5. MEASUREMENT EQUIPMENT

Table 2 presents the equipment that was used during the measurements. The equipment fulfils the requirements of Class 1 according to SS-EN 61672-1, 60942 and 61260. Date for last calibration is kept in Akustikverkstan's instrument journal. The equipment was control calibrated before and after the measurements.

	Brand and type	Serial number
Equipment		
Analyzer	Norsonic 140	1404198
Speaker	IMA Kub 1	9
Microphone cartridge	Norsonic 1225	215330
Microphone preamplifier	Norsonic 1209	13604
Calibrator	Norsonic 1251	31964
Tapping machine	Norsonic 277	2775763
Equalizer	Monacor MEQ-2152	-
Amplifier	Denon POA-2200	-

Table 2: Equipment that was used in the measurements.

6. MEASUREMENT RESULTS

The measurement results have been evaluated according to SS-EN ISO 717-2:2013. The weighted impact sound level and the weighted impact sound improvement, together with selected correction terms are presented in Table 3. The measurement results are presented in detail in the attached measurement protocols 18-718-M1 to M12. The impact sound level of the reference floor is presented in measurement protocol 18-718-M19.

The measurement results are only valid for the tested samples.

Provnr / beskrivning	L _{n,w} (dB)	C _{I,50-2500}	$\Delta L_{\rm w}$ (dB)	$C_{\mathrm{I},\Delta}$	Measurement- protocol
1. VT-SFC with 2 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads	53	-6	25	-7	M1, M2
 VT-SFC with 3 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads 	51	-6	28	-7	M3, M4
 VT-SFC with 4 layers of 12.5 mm normal gypsum boards. P: 450 mm, G: 900 mm. 250 mm suspension with 95 mm mineral wool. 25 mm elastic pads 	49	-7	30	-7	M5, M6
4. VT-CBC-RF50 with 2 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspen- sion with 95 mm mineral wool. 50 mm elastic pads	46	2	32	-15	M7, M8
5. VT-CBC-RF50 with 3 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspen- sion with 95 mm mineral wool. 50 mm elastic pads	45	0	34	-14	M9, M10
6. VT-CBC-RF50 with 4 layers of 12.5 mm normal gypsum boards. P: 750 mm, S: 400 mm, G: 600 mm. 250 mm suspension with 95 mm mineral wool. 50 mm elastic pads	43	0	35	-13	M11, M12

Table 3: Selected one-figure measurement results and corresponding measurement protocols.

7. MEASUREMENT PRECISION

The precision of the weighted one-figure numbers is normally within $\pm 2,2$ dB. Typical precisions for each one-third octave band is shown in Table 4. These values corresponds to the repeatability of one standard deviation for this laboratory, based on ten measurements on the heavyweight reference floor during 2004 to 2015.

50 Hz	63 Hz	80 Hz	100 Hz	125 Hz	160 Hz	200 Hz
± 3,8 dB	± 3,2 dB	± 3,1 dB	± 2,2 dB	± 2,1 dB	± 1,5 dB	± 1,5 dB
250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1 kHz
± 1,1 dB	± 1,4 dB	± 0,8 dB	± 1,1 dB	± 1,1 dB	± 1,2 dB	± 1,3 dB
1,25 kHz	1,6 kHz	2,0 kHz	2,5 kHz	3,15 kHz	4,0 kHz	5,0 kHz
± 1,5 dB	± 1,9 dB	± 1,8 dB	± 2,3 dB	± 2,3 dB	± 2,5 dB	± 2,8 dB

Table 4: One standard deviation for impact sound level measurements performed on the 160 mm heavyweight reference floor.

The measurement uncertainties for meteorological parameters are shown in Table 5.

Parameter	Uncertainty
Temperature	± 0,5° C
Relative humidity	\pm 3 percent
Air pressure	\pm 0,5 kPa

Table 5: Measurement uncertainty.

8. DEVIATIONS FROM STANDARDS

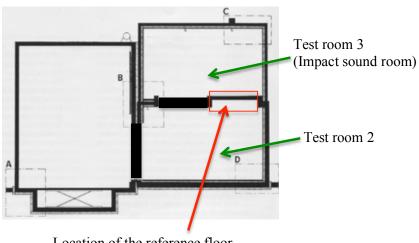
No deviations from the applicable standards were made during these measurements.

This report shall only be reprinted in its entirety. The measurement protocols may however be used separately.

Ponts

Pontus Thorsson *PhD in acoustics*

Reviewed by Johan Jernstedt, 2019-05-13


APPENDIX 1: INFORMATION ABOUT THE LABORATORY

Test room 3 (Impact sound room) on the laboratory's first floor has a rectangular shape with the dimensions L x B x H = 4,96 x 6,25 x 3,38 m. The room's volume is 105 m³ and the total surface for walls, floor and ceiling is 138 m².

Test room 2 (used as receiving room in impact sound measurements) has a rectangular shape with the dimensions L x B x H = 5,0 x 6,25 x 3,93 m. The room's volume is 123 m³ and the total surface for walls, floor and ceiling is 151 m^2 .

The reference floor's size is 4,0 x 2,5 m.

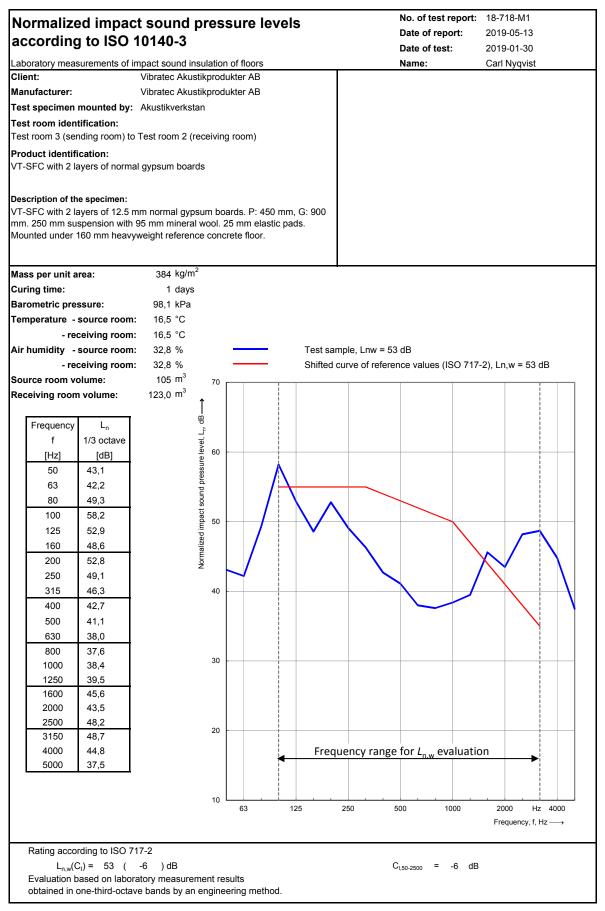
A section for the two rooms together with the location of the reference floor is shown in Figure B1.1.

Location of the reference floor

Figure B1.1: Section for Test room 2 and Test room 3 together with the location of the reference floor.

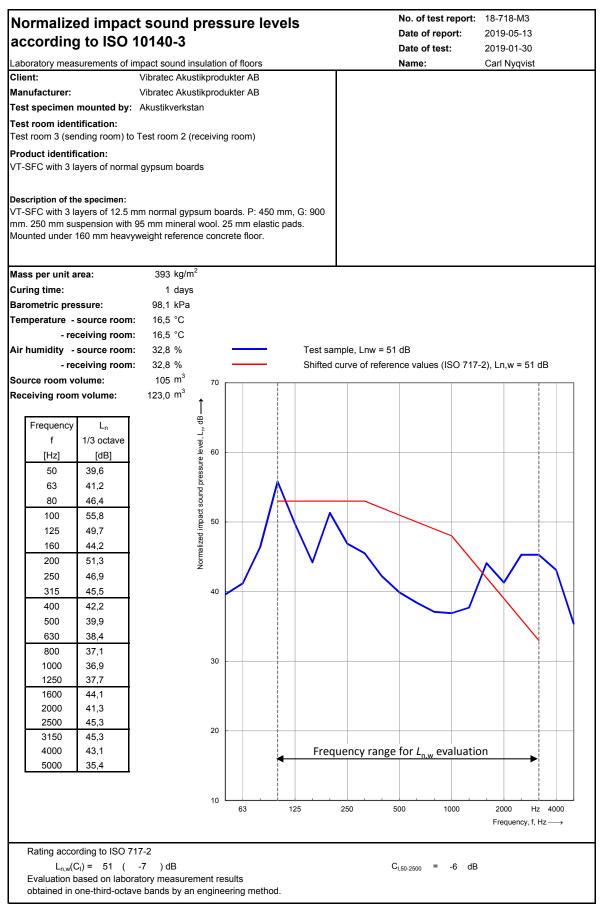
The Laboratory's address is Vallmovägen 11, 541 55 Skövde, Sweden.

APPENDIX 2: PHOTOS FROM THE MEASUREMENTS

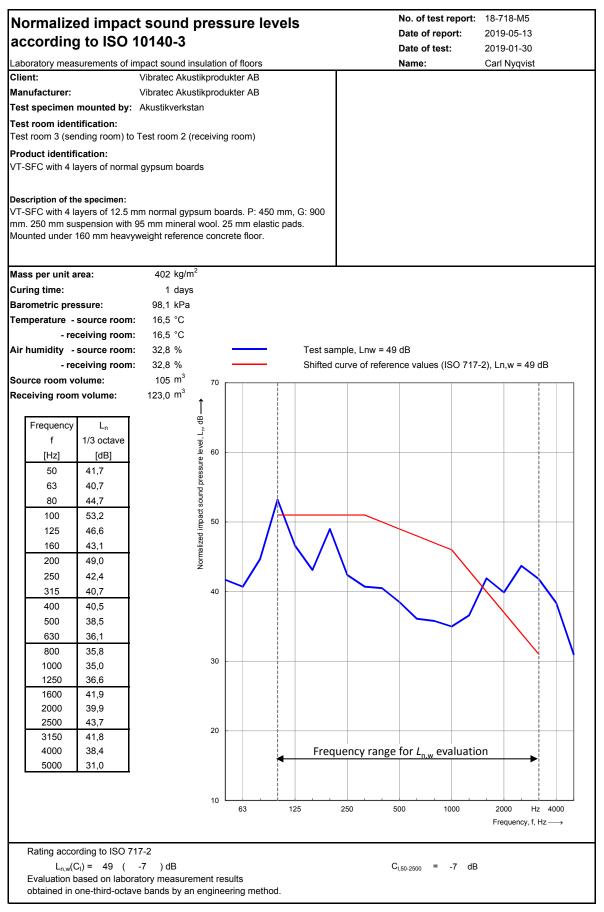

((((AKUSTIKVERKSTAN)))))

B-2(2)

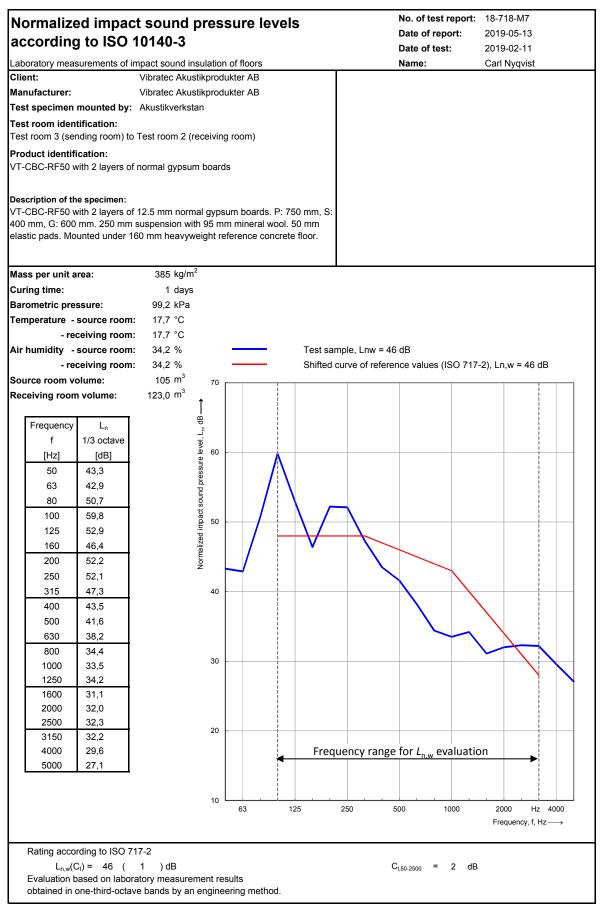
18-718-R1



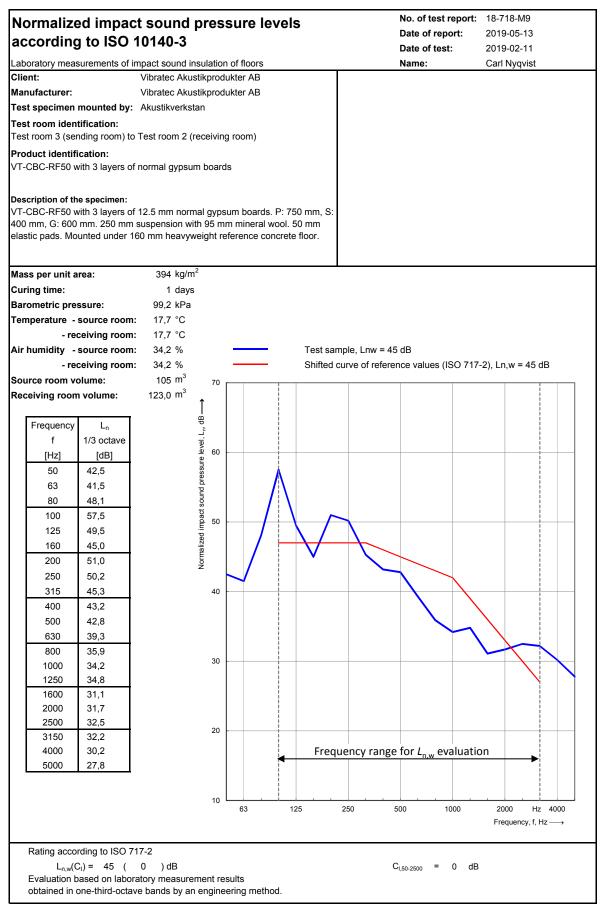
Reduction of imp according to ISO		pressu	re level	No. of test re Date of repor Date of test:	port: 18-718-M2 rt: 2019-05-13 2019-01-30
Laboratory measurements of by floor coverings on a heavy			npact noise	Name:	Carl Nyqvist
Client:	Vibratec Akusti	ikprodukter A	B		
Manufacturer:	Vibratec Akusti	ikprodukter A	В		
Test specimen mounted by	: Akustikverkstar	n			
Test room identification:					
Test room 3 (sending room) t	o Test room 2 (re	ceiving room)		
Product identification: VT-SFC with 2 layers of norm	nal gypsum board:	S			
Description of the specime VT-SFC with 2 layers of 12.5 mm. 250 mm suspension with Mounted under 160 mm heav	mm normal gypsi n 95 mm mineral v	wool. 25 mm	elastic pads.		
Mass per unit area:	19 kg/m ²				
Curing time:	86400 s				
Barometric pressure:	98,1 kPa				
Temperature - source roon					
- receiving roon					
Air humidity - source roon			Test s	ample, reduction of impact nois	se
- receiving roon					
Source room volume:	105 m ³	60			
Receiving room volume:	123,0 m ³ ↑ ₩				
Frequency L _{n,0}	ΔL 1/3 octave [dB] 2,9 0,9 4,9 6,1 7,2 17,3 26,4 26,4 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7				
f 1/3 octave	1/3 octave	50			
[Hz] [dB] 50 46,0	[dB] =				
63 43,1	2,9 Sad 0,9 P				
80 54,2	4,9 times t	40			
100 64,3	6,1				
125 60,1	7,2 ⁱⁱ jo				
160 65,9	17,3 ^{jo} g				
200 79,2	26,4 ^{jp}	30			
250 77,2	28,1				
315 77,2	30,9				
400 74,1	31,4				
500 77,0	35,9	20			
630 75,2 800 76.3	37,2				
800 76,3 1000 74,8	38,7 36,4				
1250 75,7	36,2	10	/		
1600 75,7	30,1				
2000 75,7	32,2				
2500 75,3	27,1				
3150 74,3	25,6	0			
4000 72,6	27,8		Fre	quency range for L _{n,w} eval	luation
5000 69,1	31,6			according to ISO 717	
		-10 <u>63</u>	125	250 500 100	0 2000 Hz 4000 Frequency, f, Hz →
Rating according to ISO $\Delta L_w = 25 \text{ dB}$ These results are based engineering method.		$C_{I,\Delta} = -7$ an artificial s		$C_{l,r} = -4 \text{ dB}$ atory conditions obtained in one	e-third-octave bands by an



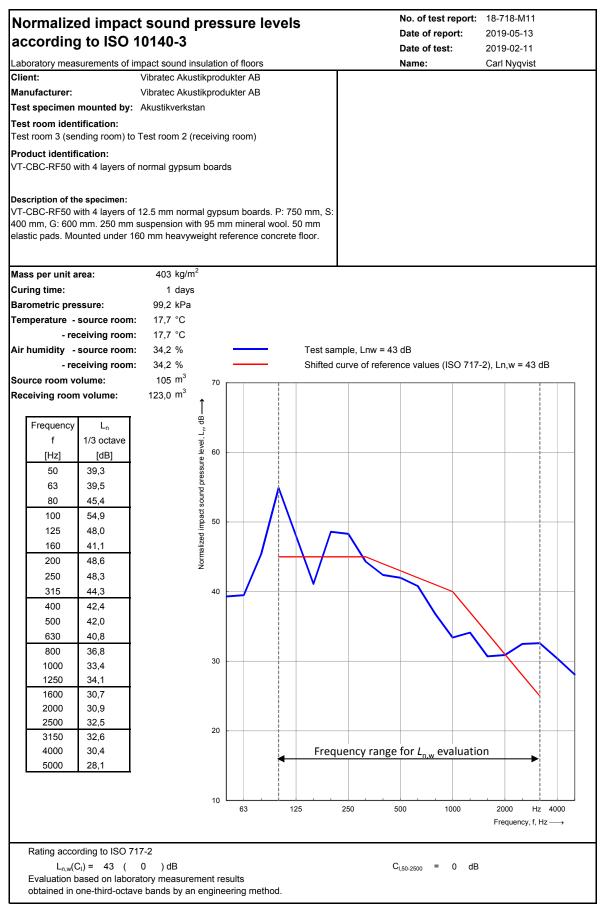
Reduction of imp according to ISO		pressure le	vel	No. of test report: 18-718-M4 Date of report: 2019-05-13 Date of test: 2019-01-30	3
Laboratory measurements of by floor coverings on a heavy			oise	Name: Carl Nyqvis	
Client:	Vibratec Akusti	ikprodukter AB			
Manufacturer:	Vibratec Akusti	ikprodukter AB			
Test specimen mounted by:	: Akustikverkstar	n			
Test room identification:					
Test room 3 (sending room) to	o Test room 2 (re	ceiving room)			
Product identification: VT-SFC with 3 layers of norm	al gypsum board	S			
Description of the specimer VT-SFC with 3 layers of 12.5 mm. 250 mm suspension with Mounted under 160 mm heav	mm normal gypsi 95 mm mineral v	wool. 25 mm elastic			
Mass per unit area:	28 kg/m ²				
Curing time:	86400 s				
Barometric pressure:	98,1 kPa				
Temperature - source room					
- receiving room					
Air humidity - source room			Test sam	nple, reduction of impact noise	
- receiving room					
Source room volume:	105 m ³	60			
Receiving room volume:	123,0 m ³ ↑ ₩				
Frequency L _{n,0}	ΔL 1/3 octave [dB] 6,4 1,9 7,8 8,5 10,4 21,7 27,9 29				
f 1/3 octave	1/3 octave	50			
[Hz] [dB] 50 46,0	[dB] 6,4				
63 43,1	0,4 gd 1,9 P	-			
80 54,2	7,8 ^{1,3}	40			
100 64,3	5,8				
125 60,1	10,4 ^E				
160 65,9	21,7 ^{Lo} t				
200 79,2	27,9 ^{jn} page	30			
250 77,2	30,3				
315 77,2	31,7				
400 74,1	31,9				
500 77,0	37,1	20			
630 75,2	36,8				
800 76,3	39,2		1		
1000 74,8	37,9 28.0	10	J		
1250 75,7 1600 75,7	38,0 31,6	10			
2000 75,7	34,4				
2500 75,3	30,0				
3150 74,3	29,0	0			
4000 72,6	29,5		Frequ	lency range for $L_{n,w}$ evaluation	
5000 69,1	33,7			according to ISO 717-2	
		-10 63	125	250 500 1000 2000 Frequency,	Hz 4000 f, Hz →
Rating according to ISO 7 ∆L _w = 28 dB These results are based of engineering method.		$C_{I,\Delta}$ = -7 dB an artificial source I	under laborato	$C_{l,r}$ = -4 dB bry conditions obtained in one-third-octave band	ds by an



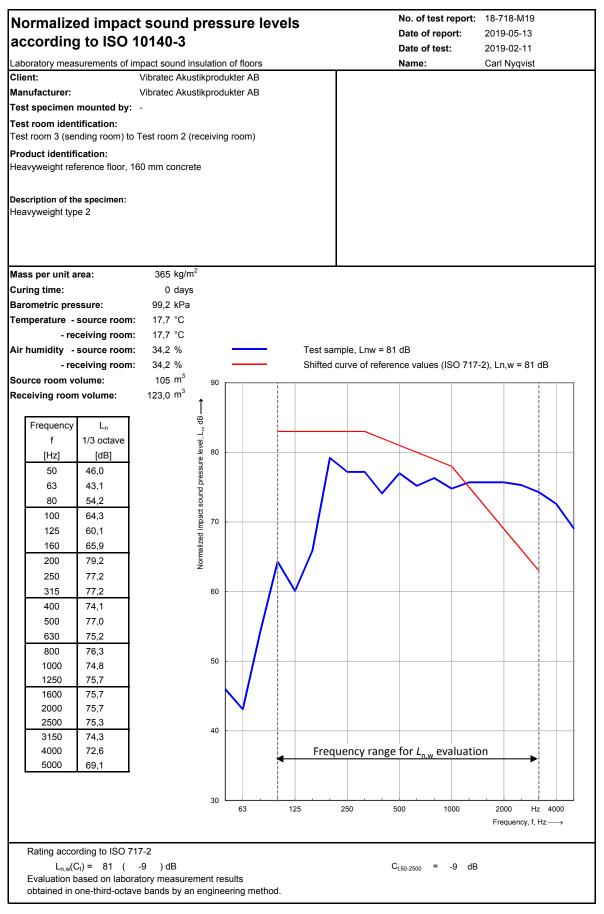
Reduction according	-		d pr	essure	level			No. of test Date of rep Date of tes	ort:	18-718-M6 2019-06-27 2019-01-30	BOTECI
aboratory measu by floor coverings				nitted impac	t noise			Name:		Carl Nyqvist	
Client:		Vibratec Aku	stikpro	dukter AB							
Manufacturer:		Vibratec Aku	stikpro	dukter AB							
Test specimen m	ounted by	: Akustikverks	tan								
Test room identif											
Fest room 3 (send	ing room) to	o Test room 2 (receivii	ng room)							
Product identifica /T-SFC with 4 lay		ial gypsum boa	rds								
Description of th /T-SFC with 4 lay nm. 250 mm susp Mounted under 16	ers of 12.5 ension with	mm normal gyp n 95 mm minera	al wool.	25 mm elas		900					
Mass per unit are	a:	37 kg/n	1 ²								
Curing time:		86400 s									
Barometric press	sure:	98,1 kPa									
Femperature - so	ource room	n: 16,5 °C									
- rece	iving room	1: 16,5 °C									
Air humidity - so					Т	est sam	ple, reductior	n of impact n	oise		
- rece	iving room										
Source room vol		105 m ³	60								
Receiving room v		123,0 m ³	₽ Î								
Frequency	L _{n,0}	ΔL	a, ∆L								
	1/3 octave	1/3 octave	50								
[Hz] 50	[dB] 46,0	[dB]	Reduction of impact sound pressure level, AL, dB 05 05 05								
	46,0 43,1	4,3 2,4	id pre								
	43,1 54,2	2,4 9,5	unos 40								
	64,3	11,1	pact								
	60,1	13,5	ofin				\sim				
	65,9	22,8	ction							~	
200	79,2	30,2	npage 30			_/					
250	77,2	34,8									
315	77,2	36,5				/					
400	74,1	33,6				/					
500	77,0	38,5	20		+						
	75,2	39,1									
	76,3	40,5									
	74,8 75.7	39,8 30,1	10								
1250 1600	75,7 75,7	39,1 33,8	10								
	75,7 75,7	35,8 35,8		/							
2500	75,3	31,6		\mathbf{N}							
	74,3	32,5	0								
	72,6	34,2									
5000	69,1	38,1				Frequ	ency range	for L _{n w} ev	aluatio	n .	
						•		ig to ISO 7			
			-10	63	125			<u> </u>	1000	2000 Hz Frequency, f,	4000 Hz —→
Rating accord ∆L _w = 30 d	В	717-2 on test made w	,	$_{\Lambda}$ = -7 dB		aborato		$C_{l,r} = -4$ c		octave banda	hy an
engineering m			, un u				,			sector Sundo	



Reduction	-		nd p	oressure l	evel			f report:	18-718-M8 2019-05-13 2019-02-11	
aboratory meas y floor covering				nsmitted impact or	noise		Name:		Carl Nyqvist	
lient:		Vibratec Ak	ustikp	rodukter AB						
anufacturer:		Vibratec Ak	ustikp	rodukter AB						
est specimen	mounted by	: Akustikverk	stan							
est room ident										
est room 3 (ser	e ,	o Test room 2	(recei	iving room)						
roduct identifi T-CBC-RF50 w		of normal gyps	um bo	bards						
00 mm, G: 600	ith 2 layers o mm. 250 mn	of 12.5 mm nor n suspension v	with 9	lypsum boards. 5 mm mineral w nt reference cor	ool. 50 mm					
ass per unit a	rea:	20 kg/i	m²							
uring time:		86400 s								
arometric pres	sure:	99,2 kPa	a							
emperature -	source roon	n: 17,7 °C								
	eiving roon									
ir humidity -					Test sa	mple, redu	iction of impa	act noise		
	eiving roon									
ource room vo		105 m ³		60	i					
eceiving room		123,0 m ³	ا ۳							
Frequency	L _{n,0}	ΔL	a, ∆L							
f ru-1	1/3 octave	1/3 octave	e levi	50						
[Hz]	[dB]	[dB]	Reduction of impact sound pressure level, ΔL , dB							
50 63	46,0 43,1	2,7 0,2	d pre							
80	43,1 54,2	0,2 3,5	unos	40				\sim		\sim
100	64,3	4,5	pact	40						
125	60,1	7,2	ofim							
160	65,9	19,5	tion							
200	79,2	27,0	educ	30			<u> </u>			
250	77,2	25,1	R							
315	77,2	29,9				\checkmark				
400	74,1	30,6								
500	77,0	35,4		20						
630	75,2	37,0								
800	76,3	41,9								
1000	74,8	41,3								
1250	75,7	41,5		10						
1600	75,7	44,6								
2000	75,7 75.3	43,7 43.0								
2500 3150	75,3 74,3	43,0 42,1								
4000	74,3 72,6	42,1 43,0		0	F		ngo for l	ou oluoti		
5000	69,1	42,0			Frec		inge for L _n			
	,					acco	ording to IS	U /1/-2		
				.10	<u> </u>					
			-	63	125	250	500	1000		4000
									Frequency, f,	Hz→
Rating accor	ding to ISO	717-2								
	dD		($C_{I,\Delta} = -15 \text{ dB}$			C _{Lr} =	4 dB		
$\Delta L_w = 32$	uБ			ο _{1,Δ} .ο αΒ			0 _{i,r} –	i ub		



Reduction of imp according to ISO		l pre	ssure le	evel		No. of te Date of r Date of t	eport:	18-718-M10 2019-05-13 2019-02-11	ISO/IEC I
Laboratory measurements of by floor coverings on a heavy	the reduction of		itted impact ı	noise		Name:		Carl Nyqvist	
Client:	Vibratec Akus		ukter AB						
Manufacturer:	Vibratec Akus	tikprod	ukter AB						
Test specimen mounted by	: Akustikverkst	an							
Test room identification:									
Test room 3 (sending room) f	o Test room 2 (r	eceiving	g room)						
Product identification: VT-CBC-RF50 with 3 layers of	of normal gypsur	n board	s						
Description of the specime VT-CBC-RF50 with 3 layers of 400 mm, G: 600 mm. 250 mr elastic pads. Mounted under	of 12.5 mm norm n suspension wit	h 95 m	m mineral wo	ool. 50 mm					
Mass per unit area:	29 kg/m	2							
Curing time:	86400 s								
Barometric pressure:	99,2 kPa								
Temperature - source roor									
- receiving room									
Air humidity - source roor	,			Test sa	mple, redu	ction of impac	t noise		
- receiving room									
Source room volume:	105 m ³	60							
Receiving room volume:	123,0 m ³	Ê.		0 0 0 0 0					
Frequency L _{n,0}	ΔL	reduction or impact sound pressure level, AL, dB 0 0							
f 1/3 octave	1/3 octave	50 9							
[Hz] [dB] 50 46,0	[dB] 3,5	sssur							
63 43,1	1,6	id pre							
80 54,2	6,1	Inos 40							
100 64,3	6,8	ipact							
125 60,1	10,6	0110							
160 65,9	20,9	CTION							
200 79,2	28,2	06 gen							
250 77,2	27,0	-		1	\checkmark				
315 77,2	31,9								
400 74,1	30,9								
500 77,0	34,2	20							
630 75,2	35,9								
800 76,3	40,4			/					
1000 74,8	40,6			J					
1250 75,7 1600 75,7	40,9 44,6	10							
2000 75,7	44,0 44,0								
2500 75,3	42,8		\mathbb{N}						
3150 74,3	42,1	0							
4000 72,6	42,4	-		Fred	uency ra	nge for L _{n.w}	evaluatio	on .	
5000 69,1	41,3			•		rding to ISO			
		-10	63	125	250	500	1000	2000 Hz Frequency, f, H	4000 Hz →
Rating according to ISO $\Delta L_w = 34 \text{ dB}$	717-2	$C_{I,\Delta}$	= -14 dB			C _{l,r} = 3	dB		
These results are based engineering method.	on test made wil	h an ar	tificial source	e under labora	tory conditi	ons obtained i	n one-third	l-octave bands	by an



Reduction ccording	-	act soun 10140	d pre	essure le	evel		No. of test report: Date of report: Date of test:	18-718-M12 2019-05-13 2019-02-11	
		the reduction over the reduction of the reduction of the standar weight standar s		itted impact n	oise		Name:	Carl Nyqvist	
lient:		Vibratec Aku	stikprod	ukter AB					
anufacturer:		Vibratec Aku	stikprod	ukter AB					
est specimen	mounted by	: Akustikverks	tan						
est room iden									
		o Test room 2	receivin	g room)					
r oduct identifi T-CBC-RF50 v		of normal gypsu	m board	is					
00 mm, G: 600	/ith 4 layers o mm. 250 mm	n: of 12.5 mm norr n suspension w 160 mm heavy [,]	ith 95 m	m mineral wo	ol. 50 mm				
ass per unit a	rea:	38 kg/n	1 ²						
uring time:		86400 s							
arometric pre	ssure:	99,2 kPa							
emperature -	source roon	n: 17,7 °C							
	ceiving roon								
ir humidity -		,			Test san	ple, reductio	n of impact noise		
	ceiving roon								
ource room vo		105 m ³	60						
eceiving room		123,0 m ³	₽ 1 1 1 1 1 1 1 1 1 1 1 1 1						
Frequency	L _{n,0}	ΔL	Reduction of impact sound pressure level, AL, dB 00 00 00 00						
f	1/3 octave	1/3 octave	8 9 9 9						
[Hz] 50	[dB] 46,0	[dB] 6,7	sssur						
63	43,1	3,6	nd pre						
80	54,2	8,8	Inos 40						\frown
100	64,3	9,4	Ipact						
125	60,1	12,1	ıofin				\sim		
160	65,9	24,8	ction			\sim			
200	79,2	30,6	np 30						
250	77,2	28,9	_			Ĭ			
315	77,2	32,9							
400	74,1	31,7							
500	77,0	35,0	20		1				
630	75,2	34,4							
800	76,3	39,5							
1000 1250	74,8 75,7	41,4 41,6	10						
1250	75,7	41,0	10						
2000	75,7	44,8		N/ I					
2500	75,3	42,8							
3150	74,3	41,7	0						
4000	72,6	42,2			Freau	ency range	e for $L_{n,w}$ evaluation	on _	
5000	69,1	41,0			•		ng to ISO 717-2		
			-10	63	125	250	500 1000	2000 Hz Frequency, f, H	4000 Iz →
∆L _w = 35			'	= -13 dB tificial source	under laborato		C _{I,r} = 2 dB obtained in one-third	l-octave bands t	oy an

